
REAL-TIME PARTITIONED CONVOLUTION FOR AMBIOPHONICS SURROUND SOUND

Anders Torger

University of Parma
Industrial Engineering Dept.

V.Scienze 181/A, 43100 PARMA, ITALY
torger@ludd.luth.se

Angelo Farina

University of Parma
Industrial Engineering Dept.

V.Scienze 181/A, 43100 PARMA, ITALY
farina@pcfarina.eng.unipr.it

ABSTRACT

Ambiophonics, as one of the most realistic music reproduction
methods, requires multi-channel convolution with very long im-
pulse responses for creation of believable reverberation.

In this paper it is shown how the heavy processing task re-
quired for a real-time Ambiophonics system, or similar convolu-
tion-intensive system, can be handled by a low-cost personal com-
puter, by means of partitioned convolution.

The only theoretical advantage of partitioned convolution is
that it provides low input/output delay. However, since the inten-
sive part of it is very easily made optimal for the target platform,
which normally is not the case for the standard overlap-and-save
algorithm, it often provides the fastest convolution as well.

1. INTRODUCTION

The Ambiophonics surround system [1], is based on the coupling
of two different reproduction methods: transaural presentation of
a cross-talk cancelled stereo recording, and multi-channel 3D re-
construction of the room’s reverberation by means of convolution
with multiple IRs. Ambiophonics was pioneered by Glasgal [2],
employing initially a physical barrier for the cross-talk cancella-
tion, and multiple hardware convolvers for the reverberation.

A first important advancement was the substitution of the phys-
ical barrier with a DSP-system capable of signal processing for
cross-talk cancellation. This was possible thanks to the stereo
dipole concept initially developed by Kirkeby, Nelson and Hamada
[3], and further refined with the help of one of the authors [4].

The surround part of an Ambiophonics system was however
still based on expensive hardware convolvers, until the first soft-
ware-based multi-channel convolvers were made available by Lo-
pez [5] and by one of the authors [6].

The goal of this paper is to describe the partitioned convolu-
tion algorithm employed inside the multi-channel software con-
volver in [6], and discussing its performance in comparison with
two other arithmetically cheaper algorithms: traditional overlap-
and-save, described in the Oppenheim-Shafer book [7], and non-
uniform partitioned convolution described by Gardner [8]. It will
be shown that although the convolution method employed here is
obviously less efficient than the other two, it is much easier to
optimize the code at low level for target processors such as Intel
Pentium III/4 or AMD K6/Athlon, leading to a CPU load which in
many cases is significantly lower.

An additional advantage is that partitioned convolution allows
for a small overall latency, becoming a serious contender to the hy-
brid zero-delay convolution algorithm patented by Lake Technol-
ogy and clearly described by Gardner, since it has a significantly

lower computational load [8], and is trivial to implement. This
becomes even more evident in cross-talk cancellation applications
like Ambiophonics, where delay is introduced in the filters them-
selves, thus there is little value in having a zero-delay convolution
algorithm. The delay needs only to be low enough so the resulting
system can be used interactively.

1.1. Brief description of an Ambiophonics system

The method can be basically explained as the simultaneous super-
position of two very different systems: cross-talk cancelled repro-
duction over a pair of closely-spaced loudspeakers, and approx-
imate wavefront reconstruction with an Ambisonics array, being
fed with reconstructed hall ambience signals derived from the left
and right direct sound channels convolved with a set of weakly-
correlated real hall impulse responses. Figures 1 and 2 show the
basic scheme of the two parts of the system.

Figure 1:Stereo-dipole reproduction through cross-talk canceling
digital filters.

The cross-talk cancellation operation is performed through the
convolution of the two input signals with a set of four inverse fil-
ters. These filters can however be quite short, the major processing
demand is instead introduced by the reproduction of off-stage early
reflections and reverberation tails, which are reproduced through
the surround array consisting of eight or more loudspeakers.

For each surround loudspeaker, two convolutions are neces-
sary, one for the left and and one for the right stereo channel. The
IRs employed must be unique, and be near the full length of the

21-24 October 2001, New Paltz, New York W2001-1



Figure 2:Virtual Ambisonics reproduction by convolution with two
sets of 3D impulse responses.

reverberation time of the original hall, which in extreme cases can
be several seconds.

In [1] both the filter design for the cross-talk cancellation and
the aspects of deriving reverberation filters from original hall mea-
surements are thoroughly addressed.

2. DESCRIPTION OF THE ALGORITHM

A brief explanation of the well known frequency-domain convo-
lution algorithm is given here, both in its unpartitioned and parti-
tioned forms.

2.1. The unpartitioned Overlap-and-Save algorithm

Although this frequency-domain convolution algorithm is not the
one employed here, it is useful to review it quickly, as it is fun-
damental to understanding partitioned convolution, which will be
described in the next sub-section.

The convolution of a continuous input signalx(τ) with a lin-
ear filter characterized by an impulse responseh(t) yields an out-
put signaly(τ) by the well-known convolution integral seen in
equation 1.

y(τ) = x(τ)⊗ h(t) =

Z ∞

0

x(τ − t) · h(t) · dt (1)

When the input signal and the impulse response are digitally
sampled (τ = i · ∆τ ) and the impulse response has finite length
N , such an integral reduces to a sum of products (equation 2).

y(i) =

N−1X
j=0

x(i− j) · h(j) (2)

The sum ofN products must be carried out for each sampled
datum, resulting in an enormous number of multiplications and
sums! Due to this, the real-time direct convolution is normally
limited to impulse response lengths of a few hundred points, while
a satisfactory emulation of a typical concert hall requires at least
65,536 points, at 48 kHz sampling rate.

However, the convolution task can be significantly simplified
performing FFTs and IFFTs, because the time-domain convolution
reduces to simple multiplication in the frequency domain, between
the complex Fourier spectra of the input signal and of the impulse
response. As the FFT algorithm inherently assumes the analysed
segment of signal is periodic, a straight-forward implementation of
the frequency domain processing produces unsatisfactory results.
The periodicity caused by FFTs must be removed from the output
sequence, which can be done with the overlap-and-save algorithm
[8]. The flow chart in figure 3 explains the process.

Figure 3:The Overlap-and-Save algorithm.

As the process outputs onlyM − N convolved data points,
the input window ofM points must be shifted to the right over
the input sequence of exactlyM − N points, before performing
the convolution of the subsequent segment. The trade-off is that
FFTs of lengthM > N are required. Typically, a factor of two
(M = 2 · N ) gives the best efficiency to the overlap-and-save
algorithm.

2.2. The partitioned Overlap-and-Save algorithm

In this variation of the basic algorithm, which was first proposed by
Stockham in 1966 [9] and further refined for real-time implemen-
tation by Soo and Pang in 1986-1990 [10], the impulse responseh
is initially partitioned in a reasonable numberP of equally-sized
blockssn, as seen in figure 4.

Figure 4:Impulse response partitioning.

Each of these blocks is treated as a separate impulse response,
and convolved by a standard overlap-and-save process, making use
of FFT windows of lengthL. Each block is zero-padded to the
lengthL (typically equal to 2·K), and transformed with FFT so
that a collection of frequency-domain filterssn is obtained. The
results of the multiplications of these filters with the FFTs of the
input blocks are summed, producing the same result as the un-
partitioned convolution, by means of proper delays applied to the
blocks of convolved data. Each block of input data needs to be
FFT transformed just once, and thus the number of forward FFTs
is minimized.

W2001-2 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics 2001



The main advantage compared to unpartitioned convolution is
that the latency of the whole filtering processing is justL points
instead ofM , and thus the I/O delay is kept to a low value, pro-
vided that the impulse response is partitioned in a sensible number
of chunks (8 – 32). Figure 5 outlines the whole process.

Figure 5:Partitioned convolution.

3. COMPUTATIONAL PERFORMANCES

From a theoretical point of view, the process described in the pre-
vious sub-section is less efficient than the unpartitioned overlap-
and-save algorithm. It requires a higher number of arithmetic op-
erations, and more memory references. It does do some earnings
on the FFT calculations, since oneM point FFT is replaced with
P L-point FFTs, but with the slow increase of computational load
of the FFT algorithm asM grows larger (M · log(M)), the perfor-
mance increase is (theoretically) small.

The cost added by partitioned convolution is theP multiply
steps withP −1 sums needed for eachL-point output block. With
a typical value ofP = 16, the number of memory references is
increased 16 times, the multiply step is performed 16 times more
often, and the sums are not even needed in unpartitioned convolu-
tion! However, the same memory is referenced several times, and
the total amount of memory referenced is slightly reduced, since
the input and output buffers are onlyL points each, instead ofM
points as for the unpartitioned case. Additionally, the multiplica-
tion of spectra and the subsequent sum takes only a fraction of
operations compared to FFT, so the cost is not as high as it may
seem at first glance.

From a practical point of view, there are some non-obvious
advantages of partitioned convolution. First of all, as the size of
the FFTs exceeds the cache size of the processor, the performance
degradation is larger than theoretically expected. Furthermore, as
the number of partitions go up, the major part of the computational
load is moved from the FFT calculations, to the simple multiply
and add step, which is very easily optimized. On modern proces-
sors this translates into a hand-coded SIMD assembler loop of a
few lines of code. The SIMD instruction set allows for executing
several arithmetic operations in a single instruction, making the
resulting code very efficient.

To increase the performance further, this critical loop is ex-
tended with cache preload instructions, which improves memory
access performance. The task of optimizing the FFT algorithm is
much more complex, and therefore the available implementations
seldom make the most out of the given hardware. Here, the well-
known and highly efficient FFTW library [11] is employed for the
FFT calculations.

We use the open-source BruteFIR convolver [8], which was
originally designed with Ambiophonics in mind, but has become
a general-purpose audio convolver. In this case, it is configured
for 10 channel Ambiophonics, meaning 2 inputs and 10 outputs,
with 2 IRs per output, a total of 20 independent ones having the
lengths indicated. The sampling rate is 48 kHz and the internal
resolution is 32 bit floating point. Table 1 and 2 show how large
part of the processor time available is needed for achieving real-
time operation. Thus, a lower value is better, and a value larger
than 1.0 means that the machine cannot handle the processing in
real-time.

The performance benchmarks clearly show that the partitioned
convolution algorithm actually outperforms unpartitioned convo-
lution in all measured cases, if a suitable number of partitions is
chosen. Considering the added benefits of reduced latency and
more flexible IR lengths, partitioned convolution should always
be preferred. The performance comparison between the two ap-
proaches, becomes largely a comparison of the speed of the FFT
implementation and the small assembler loop performing the mul-
tiply/add step, as can be seen in table 3. FFTW works better on
Intel processors than on AMD, thus the gain from partitioning is
less evident on the Pentium test system. The higher memory band-
width of the AMD test system improves the performance of the
multiply/add step which is strictly limited by memory bandwidth,
like most algorithms on today’s standard computers.

Since Ambiophonics uses many more filters than there are in-
puts and outputs, unpartitioned convolution has an advantage over
partitioned. This is due to that partitioned convolution gains speed
from moving processing time from FFT to the multiply/add step,
and FFT is done per input and output (12 in total), while multi-
ply/add is done per filter (20 in total). Thus, in cases where there
is one filter per input and output even larger performance gains by
using partitioned convolution should be expected (which actually
can be seen in table 4). However, in the rare cases where an op-
timal FFT algorithm is available, unpartitioned overlap-and-save
will out-perform partitioned convolution in terms of throughput, as
observed from informal tests made with Lopez software [5]. Lopez
uses a heavily optimized proprietary library from Intel, which un-
fortunately is both closed-source and limited to the Microsoft Win-
dows platform, and is therefore not employed in BruteFIR.

IR length unpartitioned 4 part. 8 part. 16 part.

32,768 0.59 0.53 0.59 0.78
65,536 0.68 0.61 0.64 0.80
131,072 0.74 0.81 0.73 0.86

Table 1: Ambiophonics performance on a Pentium III 550 MHz,
256 kB cache, 100 MHz RAM.

3.1. Comparison with non-uniform partitioning

As described by Gardner [8], partitioned convolution can be arith-
metically optimized by using non-uniform partitions, starting with

21-24 October 2001, New Paltz, New York W2001-3



IR length unpartitioned 4 part. 8 part. 16 part.

32,768 0.37 0.28 0.32 0.43
65,536 0.56 0.42 0.34 0.45
131,072 0.64 0.51 0.59 0.47

Table 2:Ambiophonics performance on an Athlon 1000 MHz, 256
kB cache, 266 MHz RAM.

I/O FFT Mix/scale Multiply/add

unpartitioned 6 % 71 % 16 % 7 %
partitioned 7 % 15 % 17 % 61 %

Table 3:CPU time distribution – N = 131,072.

a small size to provide low I/O delay, and increasing the size fur-
ther back in the impulse response for increased efficiency. This
way a large part of the multiply/add step can be traded for FFTs of
longer length. The processing time required grows much slower
with increased IR lengths than with uniform-sized partitions, thus
it is a more scalable algorithm. However, it is much more complex
to implement since it requires scheduling and synchronisation of
parallel convolution tasks.

To compare the two partition strategies we have created a dum-
my program which does not carry out real convolution but per-
forms the FFTs, spectral products and sums required for non-uni-
form partitioned convolution, and the corresponding for the uni-
form and unpartitioned case. The program simulates convolution
of a single filter with one input and one output. In table 4 the re-
sults are presented. The IR lengths have been chosen to be as near
as possible to 131,072 while exactly fitting into the non-uniform
partitioning scheme with constant processor demand suggested by
Gardner [8]. The execution times have been divided with the time
for 131,072 taps unpartitioned convolution, thus a value higer than
1.0 means slower than that reference. The lowest latency of 1024
samples was chosen since at 48 kHz it is near the practical limit
of a personal computer implementation (about 20 ms). The 1000
MHz Athlon computer from table 2 generated the results.

As seen, the non-uniform partitioning is never faster than the
unpartitioned case, but can provide very low latency without a
dramatic increase in execution time. However, for Ambiophon-
ics, which is targeted at home use and reproduction of previously
made recordings, high throughput is central and latency is of less
importance, and therefore uniform partitions is the better choice.

IR length 114,688 122,880 126,976 130,048
latency 16384 8192 4096 1024

exec-time / 0.45 0.71 1.33 5.25
unpartitioned 1.06 1.19 1.27 1.45

number of 14 30 62 254
partitions 6 8 10 14

Table 4:Uniform (top) vs. non-uniform (bottom) partitioned con-
volution.

4. CONCLUSIONS

The partitioned convolution algorithm presented here makes it pos-
sible to employ a standard, low-cost personal computer for im-
plementing a complete Ambiophonics surround sound processor.

This gives access to the Ambiophonics technology for a wide num-
ber of users. The same processing can also be used for other audio
applications which require multi-channel convolution with very
long impulse responses, such as multi-channel reverberation, wave
front synthesis and detailed equalization of loudspeaker arrays.

The algorithm proved to be very efficient in terms of usage of
computer resources. In the currently available public domain im-
plementation, it can provide higher throughput than the traditional
unpartitioned overlap-and-save and the non-uniform partitioned
convolution algorithms, which both are theoretically cheaper.

5. ACKNOWLEDGEMENTS

This work was supported economically and technically by the Am-
biophonics Institute, founded by Ralph Glasgal. The authors ex-
press here their gratitude to and admiration for him, for having
developed the Ambiophonics technology and having promoted it
for mass deployment completely royalty-free and without patents,
giving substantial support to the research on surround sound repro-
duction and advanced digital signal processing.

6. REFERENCES

[1] A. Farina, R. Glasgal, E. Armelloni, A. Torger, “Ambio-
phonic Principles for the Recording and Reproduction of
Surround Sound for Music”, 19th AES Conference, Schloss
Elmau, Germany, 21-24 June 2001.

[2] R. Glasgal, K. Yates, “Ambiophonics – Beyond Surround
Sound to Virtual Sonic Reality”, Ambiophonics Institute,
1995.

[3] O. Kirkeby, P. A. Nelson, H. Hamada, “The Stereo Dipole –
A Virtual Source Imaging System Using Two Closely Spaced
Loudspeakers”, J. AES vol. 46, n. 5, 1998 May, pp. 387-395.

[4] O. Kirkeby, P. Rubak, A. Farina, “Analysis of ill-condition-
ing of multi-channel deconvolution problems”, 1999 IEEE
Workshop on Applications of Signal Processing to Audio and
Acoustics, Mohonk Mountain House New Paltz, New York
October 17-20, 1999.

[5] J. J. Lopez, A. Gonzalez, “PC Based Real-Time Multichan-
nel Convolver for Ambiophonic Reproduction”, 19th AES
Conference on Surround Sound, Schloss Elmau, Germany,
21-24 June 2001.

[6] A. Torger, “BruteFIR – an open-source general-purpose au-
dio convolver”, http://www.ludd.luth.se/˜torger/brutefir.html

[7] A. V. Oppheneim, R. Schafer, “Digital Signal Processing”,
Prentice Hall, Englewood Cliffs, NJ 1975, p. 242.

[8] W. G. Gardner, “Efficient convolution without input-output
delay”, J.AES vol. 43, n. 3, 1995 March, pp. 127-136.

[9] T. G. Stockham Jr., “High-speed convolution and correla-
tion”, AFIPS Proc. 1966 Spring Joint Computer Conf., Vol
28, Spartan Books, 1966, pp. 229 - 233.

[10] J. S. Soo, K. K. Pang, “Multidelay block frequency adap-
tive filter”, IEEE Trans. Acoust. Speech Signal Process., Vol.
ASSP-38, No. 2, February 1990.

[11] M. Frigo, S. G. Johnson, “FFTW: An Adaptive Software
Architecture for the FFT”, Proceedings of the International
Conference on Acoustics, Speech, and Signal Processing,
vol. 3, 1998, pp. 1381-1384.

W2001-4 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics 2001


